Классификация рисков в туризме

Банковское дело » Страхование и риски в туризме » Классификация рисков в туризме

Страница 8

Количественная оценка риска возможна только тогда, когда известна аналитическая или графическая функция распределения вероятностей для величины суммарной страховой выплаты, т.е. вероятность реализации каждого возможного ее значения.

При наличии такой информации могут выделены интервалы возможных значений суммы денежных выплат, сгруппированных по степени их вероятности, а значит, выбирая фиксированное значение величины верхней границы ожидаемых убытков (выплат) - Zmax, можно определить вероятность того, что фактическое значение суммы выплат окажется меньше этого значения.

Наоборот, если мы задаем уровень надежности оценки верхней границы G, то из вида функции распределения может быть установлено гарантированное значение верхней границы.

Разность между уровнем верхней границы и средним значением суммы страховых выплат <Z> дает диапазон возможных - и с некоторой вероятностью G - неблагоприятных отклонений уровня страховых выплат. Обычно эта величина составляет одно-три стандартных отклонения s величины Z от ее среднего значения <Z>:

Zmax (G) - <Z> = a (g) s, (4)

где коэффициент a (g) в зависимости от уровня гарантии безопасности G принимает значение от 1 до 3.

Величина суммарной страховой премии должна быть достаточной для обеспечения страховых выплат, поэтому ее приравнивают к максимальной величине ожидаемой суммы страховых выплат Zmax (G).

Страховая нетто-премия, взимаемая с одного страхователя, равна суммарной страховой нетто-премии, деленной на число договоров страхования:

Tn = Zmax/N = <Z> [1 + a (g) s (Zmax (G) / <Z>)] = To (1 + aVZ), (5)

где VZ = s (Zmax /<Z>) - коэффициент вариации размера суммарного страхового возмещения.

С учетом формулы (3) получаем следующую формулу для рисковой надбавки:

Tr = To aVZ (6)

Величина рисковой надбавки будет определяться в зависимости от конкретного вида коэффициента вариации. В большинстве случаев конкретный вид распределения потерь (размеров отдельных требований о выплате страховых сумм) не играет существенной роли, поскольку сумма исков, предъявляемых страховщику (величина суммарного иска), обычно зависит только от средней величины и дисперсии убытка. Дело в том, что если количество страховых случаев значительно превышает единицу [N>>1], то в силу центральной предельной теоремы распределение суммарного иска является нормальным распределением. Обозначив его дисперсию как DZ, а математическое ожидание (среднее значение суммарного иска) как:

<Z> = <N><Q>, (7)

где <N>, <Q> - среднее значение числа страховых случаев и величины страховой выплаты, получаем следующее выражение для рисковой надбавки Tr:

Tr = [ (To a) / (<N><Q>)] √{<N>#DQ + <Q>2 #Dn}, (8)

где DQ и DN - дисперсии величины страховой выплаты и количества страховых случаев.

В простейшем случае, когда все выплаты одинаковы (а следовательно их дисперсия равна нулю), имеем:

Tr = (To a) / (<N><Q>) (9)

Формула (9) также дает неплохое приближение, если коэффициент вариации уровня страховых выплат значительно меньше единицы.

При включении в страховой полис нескольких независимых рисков ожидаемая величина страховых выплат в соответствии с теоремой о сложении вероятностей представляет собой сумму всех ожидаемых страховых выплат по каждому риску в отдельности, а рисковая надбавка вычисляется как среднеквадратичная величина всех рисковых надбавок.

При исчислении тарифной ставки к нетто-премии делаются соответствующие надбавки, связанные с развитием риска. Главная статья этих надбавок - расходы на ведение дела. Последние расходы можно классифицировать как организационные, аквизиционные, ликвидационные, управленческие и связанные с инкассацией платежей.

Размер совокупной брутто-ставки рассчитывается по формуле:

Tb = Tn + Fabs, (10)

где Tb - брутто-ставка;

Tn - нетто-ставка;

Fabs - нагрузка.

В формуле (10) величины Tb, Tn, Fabs указываются в абсолютном размере.

Страницы: 3 4 5 6 7 8 9

Информация по теме:

Виды биржевых посредников и понятие брокерской конторы
Важное место в биржевой деятельности занимают брокерские конторы, без которых невозможно организовать полноценную биржевую торговлю. Они активно влияют на состояние биржевого рынка, учитывая как интересы своих клиентов, так и потребности рынка. Брокерская контора - условное название собственника бр ...

Коммерческие банки
Коммерческие банки относятся к особой категории деловых предприятий, получивших название финансовых посредников. Они привлекают капиталы, сбережения населения и другие денежные средства, высвобождающиеся в процессе хозяйственной деятельности, и предоставляют их во временное пользование другим эконо ...

Технические решения банковских технологий
На уровне технического обеспечения банковские технологии должны строиться на современных требованиях к архитектуре аппаратных средств. К ним относятся: использование разнообразных телекоммуникационных средств связи, многомашинных комплексов, архитектуры клиент-сервер, применение локальных, регионал ...

Разделы

Copyright © 2020 - All Rights Reserved - www.banksmethod.ru